[01] Zwaan, R. A., & Madden, C. J. (2005). Embodied sentence comprehension. Grounding Cognition: The Role of Perception and Action in Memory, Language, and Thinking, 224–245.
[02] Davis, E., & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM, 58(9), 92–103.
[03] Lee, T. S. (2015). The Visual System’s Internal Model of the World. Proceedings of the IEEE, 103(8), 1359–1378.
[04] George, D., Lehrach, W., Kansky, K., Lazaro-Gredilla, M., Laan, C., Marthi, B., Lou, X., Meng, Z., Liu, Y., Wang, H., Lavin, A., Phoenix, D. S. (2017). A generative vision model that trains with high data-efficiency and breaks text-based CAPTCHAs. Science.
[05] Kingma, D. P., & Welling, M. (2014). Stochastic Gradient VB and the Variational Auto-Encoder. In 2nd International Conference on Learning Representationsm (ICLR).
[06] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS).
[07] Oord, A. van den, Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv Preprint arXiv:1601.06759.
[08] Field, D.J., Hayes, A., & Hess, R. F. Contour integration by the human visual system: evidence for a local association field. Vision Research, 33(2):173–193, 1993.
[09] Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. (1999). Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9(4):406–413.
[10] Lamme, V. A. F. & Roelfsema, P.R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11):571–9.
[11] Huang, X & Paradiso, M. A. (2008). V1 response timing and surface filling-in. Journal of Neurophysiology, 100(1):539–547.
[12] Chandrasekaran, V., Wakin, M. B., Baron, D., & Baraniuk, R. G. (2009). Representation and Compression of Multidimensional Piecewise Functions Using Surflets. IEEE Transactions on Information Theory, 55(1), 374-400.
[13] Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. The Journal of Neuroscience, 9(7):2432–2442.
[14] DeYoe, E. A. & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neurosciences, 11(5):219–226.
[15] Zhou, H., Friedman, H.S., & Von Der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. The Journal of Neuroscience, 20(17):6594–6611.
[16] Thomson, A. M. & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex 13, 5–14.
[17] Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews: Neuroscience, 14(5):350–63.
[18] Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395(6700):376–381.
[19] Cohen, E. H. & Tong, F. (2015) Neural mechanisms of object-based attention. Cerebral Cortex, 25(4):1080–1092.
[20] Craft, E., Schutze, H., Niebur, E., & Von Der Heydt, R. (2007). A neural model of figure-ground organization. Journal of Neurophysiology, 97(6):4310–4326.
[21] Zhou, H., Friedman, H.S., & Von Der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. The Journal of Neuroscience, 20(17):6594–661.
[22] Lee, T. S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. JOSA A, 20(7):1434–1448.
[23] Lázaro-Gredilla, M., Liu, Y., Phoenix, D. S., & George, D. (2016). Hierarchical compositional feature learning. arXiv Preprint arXiv:1611.02252.
[24] Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. (2014). Multi-digit number recognition from street view imagery using deep convolutional neural networks. In International Conference on Learning Representations (ICLR).
[25] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. Behavioral and Brain Sciences, 1–101.
[26] AlphaGo and AI Progress. Retrieved October 24, 2017, from Miles Brundage